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Figure 1: Simple schematic showing the process of a 

vesicle with target ligands binding to the cell wall and 

being endocytosed. 

Introduction 

 Vesicles have long been shown to be useful drug carriers in a variety of situations. Drug 

delivery by these means have the advantages of protecting drugs from degradation, increasing 

the half-life in the blood stream, and targeted delivery. Liver disease is one area in which vesicle 

drug delivery has been shown to have potential as an effective therapy. There are over 100 

different types of liver disease ranging from mild to severe that affect all ages and 30 million 

Americans alone. There is a plethora of drugs that can be loaded into vesicles to slow the 

progression of these debilitating diseases. The benefits of this delivery system are substantial in 

liver diseases, such as liver cancer and hepatitis, for which available drugs exhibit significant 

extrahepatic toxicity, low hepatic clearance rates, and/or are rapidly metabolized before reaching 

their site of action. 

 Currently, one method of drug delivery to the liver is through the parenteral route of 

administration, and more specifically, 

intravenous injection. This route is the 

fastest and most controlled method to 

deliver drugs to systemic circulation, 

bypassing first pass metabolism and the 

gastro intestinal tract. This method is 

commonly used when continuous or 

large volumes of drugs need to be 

administered. Additionally, intravenous 

delivery methods can result in faster 

systemic absorption resulting in faster 

therapeutic effect, however also 

increases the potential for harmful off 

target side-effects. For this reason, 

encapsulation of drug compounds 

within vesicles may limit off target 

exposure and reduce the chance of 

negative side effects common in 



4 
BENG 221 

intravenously administered therapeutics. Upon reaching the targeted region within the liver, 

interactions between a specific vesicle conjugated ligand and cell surface receptor mediate either 

the fusion of the vesicle with the cellular membrane, or endocytosis of the vesicle, releasing the 

therapeutic compound in a controlled process to the local area.   

Applying mathematical modeling to the kinetics of vesicle drug delivery can better 

inform treatment schemes as well as reduce the time and resources needed to make these 

therapies a reality. In this investigation we explore the use of the asialoglycoprotein receptor in 

particular due to its established physiological properties within the target tissue of the liver. 

However, the general structure of the models can apply to many different specific receptors if the 

relevant constants are updated. Target ligands conjugated to the surface of vesicles allow the 

vesicles to be endocytosed by cells via natural mechanisms. It is worth noting that receptor and 

ligand interactions are not permanent and dissociation of the vesicle can occur. Mass-action 

kinetics are a useful method to model the cellular uptake of these vesicles. In biology there can 

be more than one ligand-receptor interaction per vesicle. This multivalency while biologically 

relevant can be simplified for modeling purposes to consider the sum of these interactions in 

terms of a 1:1 ratio for vesicle-binding site interactions. Mathematical models built on reaction 

kinetics can be used to evaluate the rate of internalization of vesicles into targeted cells.  

 

 

Hepatic Receptor Study
[1]

 

 Liver perfusions were performed in the previous literature to analyze the efficacy of liver 

targeted vesicles and their interactions with hepatic parenchymal cells in treating liver disease
1
. 

The single bilayer vesicles were primarily composed of cholesterol, DPPC and DGDG and 

loaded with 
14

[C]sucrose or 
14

[C]carboxyinulin to measure vesicle binding and biodistribution. 

Intravenous injections were performed in the tails of 15 adult male Spaugue-Dawley rats.  

This previous study incorporated the in vivo results obtained to develop a 

pharmacokinetic model of vesicle disposition, which can be used to predict vesicle clearance, 

internalization, and concentration in blood
 [1]

. We analyzed the model presented in Dragsten, et 

al. in its full form as well as a more simplified case. 
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Problem Statement  

 In this project we examined two models for the uptake of vesicles by the liver: one simple 

model to study analytically and one more complex model to study utilizing numerical methods. 

This involves three separate processes, the transportation of the vesicles to the liver, binding, 

uptake and regeneration of receptors. We analyzed the effect of varying rate constants on the 

eventual cellular uptake of vesicles by the target cell and demonstrate the change in receptor-

vesicle states over time.  

 

Methods 

 A relevant approach to model vesicle-receptor interaction in drug delivery is mass action 

kinetics. The central principle of mass action kinetics is that the change in rate of a given 

reaction is linearly proportional via some rate constant to the current mass. In the case of vesicle 

drug delivery both the vesicles and receptors can be modeled this way where reactions here 

represent the changing state of both of these entities. To describe vesicle drug delivery utilizing 

mass action kinetics the following assumptions were made: 

 

1. We simplify the amount of ligand-receptor interactions that can occur per vesicle. It is 

easier to disregard multivalency for modeling purposes and consider the sum of these 

interactions as a 1:1 ratio 

2. We also assume that the regeneration of receptors occurs at a balanced rate that 

corresponds to the changes in free and bound receptors. This may not be how cells 

exactly replenish receptors in a biological setting. This assumption is intrinsic to the loop 

from I back to R in our network diagram. 

3.  The effects of heat, diffusion, and transport time in space are not explicitly considered, 

these would introduce complex partial differential equations into the model. 

 

The first model we propose (See Figure 2) demonstrates the balance of receptor-vesicle 

complexes with the key assumption that vesicles are infinitely plentiful. This assumption will be 

changed in the second more complex model. 
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Figure 2: Network representation of the simplified model depicting the flow of vesicle-receptor 

complexes. 

 

 

R in this network represents the concentration of unbound receptors, B represents the 

concentration of receptor-vesicle bound complexes, and I represents the concentration of vesicles 

that have been internalized into the cell. R depends on the rate constant,   , for receptors going 

to the bound state as ligand-receptor binding occurs. Complexes in the B state also can revert 

back to the R state when vesicles dissociate from the receptors via the rate constant   . R is 

finally also affected proportionally by the rate,   , which represents the transition from I to R 

meaning biologically that new cell receptors are being presented on the surface after the 

endocytosis. B depends on both its forward and backward state changes with R as well as the 

forward change from a bound receptor-complex to the I state proportional to the rate constant   .  

 

This model network of vesicle-receptor behavior can also be represented by the following set of 

ordinary differential equations via the principles of mass action kinetics:   
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There is utility in going through the analytical solution for this system before using numerical 

methods on a more complex model that involves the movement of injected vesicles in and out of 

target tissue. 

 

Analytical Solution of Simplified Model 

The system of linear differential equations can be written in matrix form to facilitate 

solving for the eigenvalues and vectors.  The first step in this process involves crafting the 

following coefficients matrix for the above system of ordinary differential equations:  

 

|

      
  (      )   

     
              

                                 
| 

 

The eigenvalues ( ) and corresponding vectors ( ) are shown below. From these values 

the general solution can be formed. The general solution obtained from these eigenvalues and 

vectors allows for a solution of the constants by plugging in the initial conditions and parameter 

values (See Table 1). 
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The steady-state solutions of this system are easily calculated by setting the rates of 

change of each state to zero and are as follows:  
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Figure 3: Solution of the simplified model plotted. These results align with the 

biological relevance as R is shown to decrease while B and I both increase at 

appropriate rates. 

 

Graphing the solution to this system demonstrates the biological relevance of the model 

solution (See Figure 3). As would be expected the values of R decrease over the specified time 

period as the B and I states both increase, however with B increasing more rapidly at first then 

allowing I to also increase. These trends make logical sense when remembering the biological 

scenario being modeled as unbound receptors decrease with corresponding increase in bound 

receptor-vesicle complexes, followed by an increase in the internalization of those receptor-

vesicle complexes. 
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Figure 4: Complex network implementing both the simplified network as well as new 

terms for the concentration of vesicles. 

Complex Model and Numerical Analysis 

As previously noted a critical assumption made to simplify the first model was that 

vesicles were not a limiting factor, here we introduce representation for the spatial difference in 

vesicle concentration as outlined in Dragsten et al. We now introduce                    to 

include the balance of vesicles reaching the target liver tissue (See Figure 4). 

 

 
 

 

   is the concentration of vesicles outside of the tissue and    is the concentration of 

vesicles in proximity to the receptors within the tissue and can therefore interact and engage in 

the receptor-vesicle balance part of the network outlined in the previous section. Here the     

and    coefficients are representative of hepatic plasma flow rate. A key deviation from the 

literature we implemented was to make     exceed     whereas in the paper they implement a 

singular Q value for this flow rate. Physiologically the flow rate would not be different, but by 

making       larger we incorporate that due to the targeting the receptors in    should be more 
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prone to staying in the target tissue than reverting back to the    state. This complex model with 

vesicle concentrations implemented can be represented by the following system of five linear 

differential equations. 

   
  

              

 

   
  

                       

 

  

  
               

 

  

  
       (     )  

 

  

  
         

 

The numerical solution of this system of five linear differential equations was obtained 

using ode45 in MATLAB. The behavior of the receptor-vesicle complexes mirrors what the 

analytical solution of the simplified model resulted in, while introducing the dependence on 

vesicle concentration.    and    compress the time scale of the receptor-vesicle behavior in the 

second half of the network. This intuitively makes sense as more vesicles enter the    state.  
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Figure 5: Solution of the complex model plotted. The essential behavior of R, B, and I 

is maintained from the simplified model, but a new dependence on the concentration of 

vesicles accelerates this behavior. 
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Parameter Values 

 Parameter values of reasonable physiological scale as reported in the literature (CITE) are 

shown in Table 1 below. These are the values used throughout our models and simulations. 

 

Table 1: Parameter and Initial Condition values used for the model 

*Concentration units are relative amounts and percentages of total initial vesicle concentration.  

 

 

 

 

 

 

Parameter Description Value Units 

   Rate constant for unbound 

receptors transitioning to bound 
0.128 mL/µg/min 

   Rate constant for bound vesicle-

receptors being internalized 
0.102 min

-1 

   
Rate constant for regeneration of 

unbound receptors from the 

internalization 

0.0102 NA 

   
Rate constant for bound vesicle-

receptor complex dissociating 

back to unbound 

0.0048 min
-1 

    
Value representing the hepatic 

flow of vesicles into the liver 

tissue 

2.275 ml/min 

    
Value representing the hepatic 

flow vesicles back out of the liver 

tissue 

0.975 ml/min 

 ( ) The initial value at time (t=0) of 

unbound receptors 
2 NA 

 ( ) The initial value at time (t=0) of 

bound vesicle-receptors 
0 NA 

 ( ) The initial value at time (t=0) of 

internalized vesicle-receptors 
0 NA 

  ( ) The initial value at time (t=0) of 

vesicles outside the tissue 
5 NA 

  ( ) The initial value at time (t=0) of 

vesicles inside the tissue  
0 NA 
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Conclusion and Recommendations 

 The interaction and uptake of vesicles by the liver was successfully modeled in two 

scenarios. A simplified case study was presented that demonstrated physiologically sensible 

results providing insights into the general behavior of the system. The more complex system 

previously presented by Dragsten et al. was modified then modeled to take into account the 

concentration of vesicles inside and outside of the liver. Introduction of these concentration 

terms yielded results that were similar to the analytical solution but shifted in time, suggesting 

that a concentration gradient as well as binding affinities speed up the interactions. Our 

simulation result was able to correspond to the behavior of the actual scenario we set out to 

model thus indicating strength of the modeling efforts. Particularly interesting is the more 

complex scenario where we introduce a dependence on the concentration for the concentration in 

and outside of the tissue. As expected the concentration within the tissue has a sharp increase 

relatively early in the time profile as vesicles diffuse to the target, what is interesting is that this 

eventually levels off with slight decrease (See Figure 5). This makes sense given how we elected 

to model the behavior of vesicles being bound, internalized, and critically internalized feeding to 

the regeneration of unbound receptors. The C2 values must drop off to accommodate this overall 

balance and reach steady state. Further the dynamics of the entire scenario result in an accurate 

portrayal of the reaction being diffusion limited, which is expected when using rate kinetics in 

this manner. The overall, actual mass kinetics are only dependent on the diffusion over time, 

which is well reflected by our simulation results. 

The presented models could be improved by taking into consideration vesicle stability 

and loading. In order to produce a more applicable model additional interactions would also need 

to be taken into account. A few of these additional interactions could include the capacity of the 

liver to take up the vesicle, accurate modeling of vesicle trafficking through the bloodstream 

following IV injection, diffusion, etc. 

 In this project, we presented the mathematical model crafted by Dragsten et al as well as 

a simplified case that could be solved analytically. We also changed the constants of the model 

to better reflect the current capabilities of technology today. When comparing our analytical and 

numerical solutions it is demonstrated that both capture some of the essential behavior, but the 

more complex model is more biologically relevant. These types of kinetic models can be crafted 
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for other specific vesicle-receptor combinations and then the models can be used to improve the 

efficiency and efficacy of their design.  
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Appendix of Code 

 
%BENG221 Project Code 
    %CJ Norsigian, Michael Salazar, Michael Liao  
clc 
clear 

 
%%Analytical Solution%% 

syms R(t) B(t) I(t) ka kb kc kd  

  
eqns = [diff(R,t)==kc*I-ka*R+kd*B, diff(B,t)==ka*R-kb*B-kd*B,... 
    diff(I,t)==kb*B-kc*I]; 

  
cond = [R(0)==2, I(0)==0, B(0)==0]; 

  
sol = dsolve(eqns,cond); 

  
solR(t)=sol.R; 
solB(t)=sol.B; 
solI(t)=sol.I; %Particular solutions to the system at question were obtained 

and assigned to new variables of R, B and I below 

  
t=[0:0.1:10]; 

 
ka= 0.128; 
kb= 0.102; 
kc= 0.0102; 
kd= 0.0048; 

  
t=[0:0.1:10]; 

  
R=(2*kc*(kb + kd))/(ka*kb + ka*kc + kb*kc + kc*kd) + (ka*kb*exp(-(t*(ka + kb 

+ kc + kd + (ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + 

kc^2 - 2*kc*kd + kd^2)^(1/2)))/2)*((ka/2 + kb/2 + kc/2 + kd/2 + (ka^2 - 

2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + 

kd^2)^(1/2)/2)/kb - (kb + kc)/kb)*(ka + kb + kc + kd - (ka^2 - 2*ka*kb - 

2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + 

kd^2)^(1/2)))... 
    /(ka*kb*(ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd 

+... 
    kc^2 - 2*kc*kd + kd^2)^(1/2) + ka*kc*(ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd 

+ kb^2 - ... 
    2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2) + kb*kc*(ka^2 - 2*ka*kb 

- 2*ka*kc +... 
    2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2) + 

kc*kd*(ka^2 - ... 
    2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + 

kd^2)^(1/2)) -... 
    (ka*kb*exp(-(t*(ka + kb + kc + kd - (ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + 

kb^2 - 2*kb*kc... 
    + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2)))/2)*((ka/2 + kb/2 + kc/2 + kd/2 

- ... 
    (ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + ... 
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    kc^2 - 2*kc*kd + kd^2)^(1/2)/2)/kb - (kb + kc)/kb)*(ka + kb + kc + ... 
    kd + (ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 -... 
    2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2)))/(ka*kb*(ka^2 - 

2*ka*kb... 
    - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + 

kd^2)^(1/2)... 
    + ka*kc*(ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + 

kc^2 - 2*kc*kd... 
    + kd^2)^(1/2) + kb*kc*(ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 

2*kb*kc + 2*kb*kd ... 
    + kc^2 - 2*kc*kd + kd^2)^(1/2) + kc*kd*(ka^2 - 2*ka*kb - 2*ka*kc + 

2*ka*kd + ... 
    kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2)); 

  
B= (2*ka*kc)/(ka*kb + ka*kc + kb*kc + kc*kd) - (ka*kb*exp(-(t*(ka + kb + kc + 

kd +... 
    (ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 

2*kc*kd... 
    + kd^2)^(1/2)))/2)*((ka/2 + kb/2 + kc/2 + kd/2 + (ka^2 - 2*ka*kb - 

2*ka*kc + 2*ka*kd ... 
    + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2)/2)/kb - 

kc/kb)*(ka... 
    + kb + kc + kd - (ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 

2*kb*kd + kc^2 ... 
- 2*kc*kd + kd^2)^(1/2)))/(ka*kb*(ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 

2*kb*kc ... 
    + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2) + ka*kc*(ka^2 - 2*ka*kb - 

2*ka*kc + 2*ka*kd... 
    + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2) + kb*kc*(ka^2 - 

2*ka*kb ... 
    - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + 

kd^2)^(1/2) + kc... 
    *kd*(ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 

- 2*kc*kd ... 
    + kd^2)^(1/2)) + (ka*kb*exp(-(t*(ka + kb + kc + kd - (ka^2 - 2*ka*kb - 

2*ka*kc + 2*ka*kd... 
    + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2)))/2)*((ka/2 + 

kb/2 + kc/2 ... 
    + kd/2 - (ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + 

kc^2 - 2*kc*kd... 
    + kd^2)^(1/2)/2)/kb - kc/kb)*(ka + kb + kc + kd + (ka^2 - 2*ka*kb - 

2*ka*kc + 2*ka*kd... 
    + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2)))/(ka*kb*(ka^2 

- 2*ka*kb... 
    - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + 

kd^2)^(1/2)... 
    + ka*kc*(ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + 

kc^2 - 2*kc*kd ... 
    + kd^2)^(1/2) + kb*kc*(ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 

2*kb*kc + 2*kb*kd ... 
    + kc^2 - 2*kc*kd + kd^2)^(1/2) + kc*kd*(ka^2 - 2*ka*kb - 2*ka*kc + 

2*ka*kd + kb^2 -... 
    2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2)); 

  
I= (2*ka*kb)/(ka*kb + ka*kc + kb*kc + kc*kd) + (ka*kb*exp(-(t*(ka + kb + kc + 

kd +... 
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    (ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 

2*kc*kd + ... 
    kd^2)^(1/2)))/2)*(ka + kb + kc + kd - (ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd 

+ kb^2 - 2*kb*kc... 
    + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2)))/(ka*kb*(ka^2 - 2*ka*kb - 

2*ka*kc + 2*ka*kd ... 
    + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2) + ka*kc*(ka^2 - 

2*ka*kb - 2*ka*kc... 
    + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2) + 

kb*kc*(ka^2 - 2*ka*kb... 
    - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + 

kd^2)^(1/2) + kc*kd*(ka^2 ... 
- 2*ka*kb - 2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + 

kd^2)^(1/2)) - (ka*... 
    kb*exp(-(t*(ka + kb + kc + kd - (ka^2 - 2*ka*kb - 2*ka*kc + 2*ka*kd + 

kb^2 - 2*kb*kc + 2*kb*kd + ... 
    kc^2 - 2*kc*kd + kd^2)^(1/2)))/2)*(ka + kb + kc + kd + (ka^2 - 2*ka*kb - 

2*ka*kc + 2*ka*kd + kb^2 ... 
- 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2)))/(ka*kb*(ka^2 - 2*ka*kb - 

2*ka*kc + 2*ka*kd + kb^2 ...  
- 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2) + ka*kc*(ka^2 - 2*ka*kb - 

2*ka*kc + 2*ka*kd + kb^2 ... 
- 2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2) + kb*kc*(ka^2 - 2*ka*kb - 

2*ka*kc + 2*ka*kd + kb^2 - ... 
2*kb*kc + 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2) + kc*kd*(ka^2 - 2*ka*kb - 

2*ka*kc + 2*ka*kd + kb^2 - 2*kb*kc... 
+ 2*kb*kd + kc^2 - 2*kc*kd + kd^2)^(1/2)); 

  
 figure 
width = 3;     % Width in inches 
height = 3;    % Height in inches 
alw = 0.75;    % AxesLineWidth 
fsz = 11;      % Fontsize 
lw = 1.5;      % LineWidth 
msz = 8;       % MarkerSize 
 plot(t,R,'b') 
 hold on 
 plot(t,B,'g') 
 plot(t,I,'r') 
 set(gca,'XTickLabel',{}) 
 set(gca,'YTickLabel',{}) 
 title('Analytical Solutions') 
 xlabel('Time') 
 set(gca,'XTickLabel',{}) 
 set(gca,'YTickLabel',{}) 
 ylabel('[Vesicle/Receptor Complex]') 
 legend('R(t)','B(t)','I(t)','Location','best') 

  
%%More Complex Numerical Solution%%  

% x(1)=R x(2)=B x(3)=I x(4)=C1/a x(5)=C2/b 

  
% ka=0.0048; %k1 
% kb=1.02;  %k2 
% kc=0.012; %k3 
% kd=0.128; %k4% 
%Q=32.5; 
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Q=3.25; 
Qa=Q*.7; 
Qb=Q*.3; 

  
%Same Q 
f = @(t,x) [kc*x(3)-ka*x(1)*x(5)+kd*x(2);... 
    ka*x(5)*x(1)-(kb+kd)*x(2);... 
    kb*x(2)-kc*x(3);... 
    (x(5)-x(4))*Q;... 
    (x(4)-x(5))*Q-ka*x(1)*x(5)+kd*x(2)]; 
%Varying Q's 
f = @(t,x) [kc*x(3)-ka*x(1)*x(5)+kd*x(2);... 
    ka*x(5)*x(1)-(kb+kd)*x(2);... 
    kb*x(2)-kc*x(3);... 
    (Qb*x(5)-Qa*x(4));... 
    (x(4)*Qa-x(5)*Qb)-ka*x(1)*x(5)+kd*x(2)]; 

  
[t,xa] = ode45(f,[0 7],[2 0 0 5 0],1e-5);%ODE 45 solving for the numerical 

solution 

  

figure 
width = 3;     % Width in inches 
height = 3;    % Height in inches 
alw = 0.75;    % AxesLineWidth 
fsz = 11;      % Fontsize 
lw = 1.5;      % LineWidth 
msz = 8;       % MarkerSize 
subplot(2,1,1); 
plot(t,xa(:,1),'b') 
hold on 
plot(t,xa(:,2),'g') 
plot(t,xa(:,3),'r') 
 set(gca,'XTickLabel',{}) 
 set(gca,'YTickLabel',{}) 
title('Numerical Solutions') 
xlabel('Time') 
ylabel('[Vesicle/Receptor Complex]') 
legend('R(t)','B(t)','I(t)') 
hold off 
subplot(2,1,2); 
plot(t,xa(:,4),'m') 
hold on  
plot(t,xa(:,5),'k') 
hold off 
set(gca,'XTickLabel',{}) 
set(gca,'YTickLabel',{}) 
legend('C1(t)','C2(t)','Location','best') 
xlabel('Time') 
ylabel('[Vesicles]') 

 


